论文标题

通过保形预测改善专家预测

Improving Expert Predictions with Conformal Prediction

论文作者

Straitouri, Eleni, Wang, Lequn, Okati, Nastaran, Rodriguez, Manuel Gomez

论文摘要

自动决策支持系统有望帮助人类专家更有效,准确地解决多类分类任务。但是,现有系统通常要求专家了解何时将代理机构割让到系统或何时行使自己的代理机构。否则,专家可能会自己解决分类任务。在这项工作中,我们开发了一种自动决策支持系统,该系统不需要专家了解何时信任该系统以提高性能。我们的系统没有提供(单个)标签预测并让专家决定何时信任这些预测,而是提供了使用共形预测$ \ unicode {x2014} $预测集$ \ unicode {x2014} $构建的标签预测集,并有力地要求专家从这些集合中预测标签。通过使用共形预测,我们的系统可以精确地权衡真正标签不在预测集中的概率,这决定了我们的系统会误导专家的频率,以及预测集的大小,这决定了专家使用我们系统解决求解所需的分类任务的难度。此外,我们开发了一种高效且近乎最佳的搜索方法,以找到使用我们系统中专家受益最大的保形预测因子。使用合成和实际专家预测的仿真实验表明,我们的系统可能有助于专家做出更准确的预测,并且对分类器的准确性具有稳健性。

Automated decision support systems promise to help human experts solve multiclass classification tasks more efficiently and accurately. However, existing systems typically require experts to understand when to cede agency to the system or when to exercise their own agency. Otherwise, the experts may be better off solving the classification tasks on their own. In this work, we develop an automated decision support system that, by design, does not require experts to understand when to trust the system to improve performance. Rather than providing (single) label predictions and letting experts decide when to trust these predictions, our system provides sets of label predictions constructed using conformal prediction$\unicode{x2014}$prediction sets$\unicode{x2014}$and forcefully asks experts to predict labels from these sets. By using conformal prediction, our system can precisely trade-off the probability that the true label is not in the prediction set, which determines how frequently our system will mislead the experts, and the size of the prediction set, which determines the difficulty of the classification task the experts need to solve using our system. In addition, we develop an efficient and near-optimal search method to find the conformal predictor under which the experts benefit the most from using our system. Simulation experiments using synthetic and real expert predictions demonstrate that our system may help experts make more accurate predictions and is robust to the accuracy of the classifier the conformal predictor relies on.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源