论文标题

基于阻力的CME传播建模的参数分布

Parameter Distributions for the Drag-Based Modeling of CME Propagation

论文作者

Napoletano, Gianluca, Foldes, Raffaello, Camporeale, Enrico, de Gasperis, Giancarlo, Giovannelli, Luca, Paouris, Evangelos, Pietropaolo, Ermanno, Teunissen, Jannis, Tiwari, Ajay Kumar, Del Moro, Dario

论文摘要

近年来,在太空天气中广泛使用了合奏建模,以估计预测中的不确定性。在这里,我们专注于使用基于阻力的模型的CME到达时间和到达速度的整体建模,该模型非常适合其简单性和低计算成本。尽管以前已将整体技术应用于基于阻力的模型,但仍不清楚如何最好地确定其输入参数的分布,即阻力参数和太阳风速。这项工作的目的是评估从过去的CME-ICME事件列表开始的这些模型参数的统计分布。我们采用Lasco Coronagraph观测值来测量初始CME位置和速度,并原位数据将它们与到达日期和到达速度相关联。对于每个事件,我们都采用一个统计过程来倒置模型方程,从而产生参数分布作为输出。我们的结果表明,即使它们是基于限制样本和启发式方面的考虑,也适当地选择了以前的作品中使用的分布。另一方面,还可以确定对当前方法的可能进行的改进,例如,拖动参数分布对CME的依赖性是由太阳风加速或减速的CME,这值得进一步研究。

In recent years, ensemble modeling has been widely employed in space weather to estimate uncertainties in forecasts. We here focus on the ensemble modeling of CME arrival times and arrival velocities using a drag-based model, which is well-suited for this purpose due to its simplicity and low computational cost. Although ensemble techniques have previously been applied to the drag-based model, it is still not clear how to best determine distributions for its input parameters, namely the drag parameter and the solar wind speed. The aim of this work is to evaluate statistical distributions for these model parameters starting from a list of past CME-ICME events. We employ LASCO coronagraph observations to measure initial CME position and speed, and in situ data to associate them with an arrival date and arrival speed. For each event we ran a statistical procedure to invert the model equations, producing parameters distributions as output. Our results indicate that the distributions employed in previous works were appropriately selected, even though they were based on restricted samples and heuristic considerations. On the other hand, possible refinements to the current method are also identified, such as the dependence of the drag parameter distribution on the CME being accelerated or decelerated by the solar wind, which deserve further investigation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源