论文标题

带有能量收集传感器的资源受限的高速气物联网网络中的按需AOI最小化的AOI最小化

On-Demand AoI Minimization in Resource-Constrained Cache-Enabled IoT Networks with Energy Harvesting Sensors

论文作者

Hatami, Mohammad, Leinonen, Markus, Chen, Zheng, Pappas, Nikolaos, Codreanu, Marian

论文摘要

我们考虑了一个受资源约束的IoT网络,其中多个用户向启用缓存的边缘节点提出了按需请求,以发送有关各种随机过程的状态更新,每个过程都由能量收集传感器监视。边缘节点通过确定是否命令相应的传感器发送新的状态更新或从缓存中检索最近收到的测量方法来服务用户的请求。我们的目的是找到边缘节点的最佳动作,以最大程度地减少根据要求,即平均按点数AOI的平均信息(AOI)的平均信息年龄(AOI),但要受到每插槽传输和能量约束的约束。首先,我们得出了马尔可夫决策过程模型,并提出了一种获得最佳策略的迭代算法。然后,我们开发了一种渐近最佳的低复杂性算法 - 称为松弛 - 然后截断 - 并证明它是最佳的,因为传感器的数量进入无穷大。仿真结果表明,与意识到的贪婪(近视)策略相比,提出的放松 - 然后截断的方法显着降低了平均按需的AOI,并且还描绘了它在中等数量的传感器上,它甚至可以接近最佳解决方案。

We consider a resource-constrained IoT network, where multiple users make on-demand requests to a cache-enabled edge node to send status updates about various random processes, each monitored by an energy harvesting sensor. The edge node serves users' requests by deciding whether to command the corresponding sensor to send a fresh status update or retrieve the most recently received measurement from the cache. Our objective is to find the best actions of the edge node to minimize the average age of information (AoI) of the received measurements upon request, i.e., average on-demand AoI, subject to per-slot transmission and energy constraints. First, we derive a Markov decision process model and propose an iterative algorithm that obtains an optimal policy. Then, we develop an asymptotically optimal low-complexity algorithm -- termed relax-then-truncate -- and prove that it is optimal as the number of sensors goes to infinity. Simulation results illustrate that the proposed relax-then-truncate approach significantly reduces the average on-demand AoI compared to a request-aware greedy (myopic) policy and also depict that it performs close to the optimal solution even for moderate numbers of sensors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源