论文标题
几个复杂变量的矢量值函数的无尺寸增长结果
Dimension Free Growth Results for Vector-Valued Functions of Several Complex Variables
论文作者
论文摘要
令F为有限顺序小于1的全部功能。F的最大模量m(r)和零N(R)的计数函数通过称为Vailiron的定理的最佳增长不平等连接。 对于D维欧几里得空间中的功能亚谐波,Hayman获得了相应的结果,最佳可能的常数涉及尺寸d。对于D维复合空间的整个功能的特殊情况,我们获得了相应的无维度,最佳的不等式。
Let f be an entire function of finite order less than 1. The maximum modulus M(r) of f and the counting function of the zeros N(r) are connected by a best possible growth inequality known as Valiron's Theorem: For functions subharmonic in d-dimensional Euclidean space, Hayman obtained a corresponding result with a best possible constant involving the dimension d. For the special case of an entire function on d-dimensional complex space, we obtain a corresponding dimension-free, best possible inequality.