论文标题

使用图形神经网络和多尺度小波超像素的图像分类

Image Classification using Graph Neural Network and Multiscale Wavelet Superpixels

论文作者

Vasudevan, Varun, Bassenne, Maxime, Islam, Md Tauhidul, Xing, Lei

论文摘要

先前使用图形神经网络(GNN)进行图像分类的研究集中在从常规的像素或类似大小的超像素的网格产生的图上。在后者中,无论图像之间的差异及其内在的多尺度结构,都为整个数据集定义了单个目标数量的Superpixels。相反,本研究使用特定于图像数量的多尺度超像素生成的图研究了图像分类。我们提出了一种新的基于小波的超级像素算法WaveMesh,其中图像中的超级像素的数字和大小是根据其内容系统计算的。 WaveMesh超级像素图在结构上与相似大小的超级像素图不同。我们使用SplineCnn(用于图像图分类的最先进网络)来比较wavemesh和相似大小的超像素。使用SplineCnn,我们在三个局部建立的设置下对三个基准数据集进行了广泛的实验:1)无池,2)Gracluspool和3)Wavepool,这是一种量身定制的,是为WaveMesh Superpixels量身定制的新型空间异质池。我们的实验表明,SplineCnn从与类似大小的超像素的PAR中从多尺度Wavemesh Superpixels中学习。在所有WaveMesh实验中,Gracluspool的表现都比没有合并 /波浦型较差,这表明合并的选择差会导致性能较低,同时从多尺度超级像素学习。

Prior studies using graph neural networks (GNNs) for image classification have focused on graphs generated from a regular grid of pixels or similar-sized superpixels. In the latter, a single target number of superpixels is defined for an entire dataset irrespective of differences across images and their intrinsic multiscale structure. On the contrary, this study investigates image classification using graphs generated from an image-specific number of multiscale superpixels. We propose WaveMesh, a new wavelet-based superpixeling algorithm, where the number and sizes of superpixels in an image are systematically computed based on its content. WaveMesh superpixel graphs are structurally different from similar-sized superpixel graphs. We use SplineCNN, a state-of-the-art network for image graph classification, to compare WaveMesh and similar-sized superpixels. Using SplineCNN, we perform extensive experiments on three benchmark datasets under three local-pooling settings: 1) no pooling, 2) GraclusPool, and 3) WavePool, a novel spatially heterogeneous pooling scheme tailored to WaveMesh superpixels. Our experiments demonstrate that SplineCNN learns from multiscale WaveMesh superpixels on-par with similar-sized superpixels. In all WaveMesh experiments, GraclusPool performs poorer than no pooling / WavePool, indicating that poor choice of pooling can result in inferior performance while learning from multiscale superpixels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源