论文标题

部分可观测时空混沌系统的无模型预测

On the Use of Instrumental Variables in Mediation Analysis

论文作者

Kim, Bora

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Empirical researchers are often interested in not only whether a treatment affects an outcome of interest, but also how the treatment effect arises. Causal mediation analysis provides a formal framework to identify causal mechanisms through which a treatment affects an outcome. The most popular identification strategy relies on so-called sequential ignorability (SI) assumption which requires that there is no unobserved confounder that lies in the causal paths between the treatment and the outcome. Despite its popularity, such assumption is deemed to be too strong in many settings as it excludes the existence of unobserved confounders. This limitation has inspired recent literature to consider an alternative identification strategy based on an instrumental variable (IV). This paper discusses the identification of causal mediation effects in a setting with a binary treatment and a binary instrumental variable that is both assumed to be random. We show that while IV methods allow for the possible existence of unobserved confounders, additional monotonicity assumptions are required unless the strong constant effect is assumed. Furthermore, even when such monotonicity assumptions are satisfied, IV estimands are not necessarily equivalent to target parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源