论文标题

Gelfand-Kirillov维度和$ P $ -ADIC JACQUET-LANGLANGS通信

Gelfand-Kirillov dimension and the $p$-adic Jacquet-Langlands correspondence

论文作者

Dospinescu, Gabriel, Paškūnas, Vytautas, Schraen, Benjamin

论文摘要

我们绑定了$ p $ - 亚种还原基团的统一Banach空间表示的Gelfand-Kirillov维度,其本地分析矢量具有无限特征。我们使用BOND来研究Hecke Eigenspaces,以完整的Shimura曲线共同体和$ p $ -ADIC BANACH的空间表示形式超过$ \ MATHBB Q_P $出现在$ \ Mathbb Q_p $上,出现在$ p $ - p $ -Adic Jacquet-langlands对应的相应效果案例中,以造成良好的有效效果。

We bound the Gelfand-Kirillov dimension of unitary Banach space representations of $p$-adic reductive groups, whose locally analytic vectors afford an infinitesimal character. We use the bound to study Hecke eigenspaces in completed cohomology of Shimura curves and $p$-adic Banach space representations of the group of units of a quarternion algebra over $\mathbb Q_p$ appearing in the $p$-adic Jacquet-Langlands correspondence, deducing finiteness results in favourable cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源