论文标题
一个完全积极扭转的空间曲线凸壳的描述的新证明
A new proof of the description of the convex hull of space curves with totally positive torsion
论文作者
论文摘要
我们给出了描述的新证明,凸出空间曲线$γ:[a,b] \ mapsto \ mathbb {r}^{d} $具有完全积极的扭转。这些曲线使得所有领先的主要未成年人的$ d \ times d $矩阵$(γ',γ'',\ ldots,γ^{(d)})$都是正的。特别是,我们恢复了凸壳边界的参数表示,其表面积和凸壳体积的不同公式以及对应于$γ$的一般力矩问题的解决方案。
We give new proofs of the description convex hulls of space curves $γ: [a,b] \mapsto \mathbb{R}^{d}$ having totally positive torsion. These are curves such that all the leading principal minors of $d\times d$ matrix $(γ', γ'', \ldots, γ^{(d)})$ are positive. In particular, we recover parametric representation of the boundary of the convex hull, different formulas for its surface area and the volume of the convex hull, and the solution to a general moment problem corresponding to $γ$.