论文标题
具有多个标记顶点的空间搜索的最佳条件
Optimality conditions for spatial search with multiple marked vertices
论文作者
论文摘要
我们为通过多个标记的顶点理解空间搜索的持续差距做出了贡献。理论框架是离散时间量子步行(QW),\ textIt {i.e。}局部统一矩阵,可在晶格上驱动单个粒子的演变。当基于QW的搜索算法必须解决仅在$ d-$ dimensional网格中找到一个标记元素的基本问题时,就可以很好地理解它们,并且已证明它们比经典搜索协议提供了二次优势。但是,一旦我们考虑搜索多个元素,算法的行为可能会受到标记元素的空间配置的影响,甚至不再保证量子优势。在这里,我们的主要贡献是三倍〜:(i)〜我们为多项目提供\ textit {足够的条件} qwsearch algorithm〜; (ii)〜我们提供了\ textIt {几乎但并非所有}具有多个标记元素的空间配置的分析证据是最佳的; (iii)〜我们从数值上表明,相对于经典对应物的计算优势并不总是确定,并且这确实取决于网格点总数上搜索元素的比例。
We contribute to fulfil the long-lasting gap in the understanding of the spatial search with multiple marked vertices. The theoretical framework is that of discrete-time quantum walks (QW), \textit{i.e.} local unitary matrices that drive the evolution of a single particle on the lattice. QW based search algorithms are well understood when they have to tackle the fundamental problem of finding only one marked element in a $d-$dimensional grid and it has been proven they provide a quadratic advantage over classical searching protocols. However, once we consider to search more than one element, the behaviour of the algorithm may be affected by the spatial configuration of the marked elements and even the quantum advantage is no longer guaranteed. Here our main contribution is threefold~: (i)~we provide \textit{sufficient conditions for optimality} for a multi-items QWSearch algorithm~; (ii)~we provide analytical evidences that \textit{almost, but not all} spatial configurations with multiple marked elements are optimal; and (iii)~we numerically show that the computational advantage with respect to the classical counterpart is not always certain and it does depend on the proportion of searched elements over the total number of grid points.