论文标题
在加权投影空间上的Hofer-Zehnder猜想
On the Hofer-Zehnder conjecture on weighted projective spaces
论文作者
论文摘要
我们证明了Shelukhin证明的Hofer-Zehnder猜想的同源性版本的扩展,该猜想是加权的投影空间,这是符合性的Orbifolds。特别是,我们证明,如果将其各向同性顺序计数的固定点数值作为此类空间的非脱位汉密尔顿二型差异性的多样性大于可能的最小数量,那么就有无限的周期性点。
We prove an extension of the homology version of the Hofer-Zehnder conjecture proved by Shelukhin to the weighted projective spaces which are symplectic orbifolds. In particular, we prove that if the number of fixed points counted with their isotropy order as multiplicity of a non-degenerate Hamiltonian diffeomorphism of such a space is larger than the minimum number possible, then there are infinitely many periodic points.