论文标题
无反转激光的量子模型
A quantum model of lasing without inversion
论文作者
论文摘要
从对多个Lambda型3级原子的量子描述开始,该原子由相干的微波场和不连贯的光学抽水驱动,我们得出了一种激光模型,我们从中朝着一致的宏观宏观图片移动。我们的分析适用于从纳米层到常规激光的热力学极限的系统尺寸范围。我们通过计算其显微镜和宏观限制的模型的非平衡稳态溶液来探索实现激光的必要条件而无需反转。对于宏观图片,我们使用平均场理论对激光相变的透彻分析。在微观情况下,我们利用密度矩阵的基本置换对称性来计算N 3级系统的精确溶液。这使我们能够证明稳态溶液随着氮的增加而接近热力学极限,从而在此极限下恢复了急剧的非平衡相变。我们证明了如何通过简单地改变相干驾驶场的相位来调整激光相变和种群反转程度。该微观模型和此处概述的框架所呈现的高量子控制水平具有进一步理解和开发纳米光子技术的应用。
Starting from a quantum description of multiple Lambda-type 3-level atoms driven with a coherent microwave field and incoherent optical pumping, we derive a microscopic model of lasing from which we move towards a consistent macroscopic picture. Our analysis applies across the range of system sizes from nanolasers to the thermodynamic limit of conventional lasing. We explore the necessary conditions to achieve lasing without inversion by calculating the non-equilibrium steady state solutions of the model at, and between, its microscopic and macroscopic limits. For the macroscopic picture, we use mean-field theory to present a thorough analysis of the lasing phase transition. In the microscopic case, we exploit the underlying permutation symmetry of the density matrix to calculate exact solutions for N 3-level systems. This allows us to show that the steady state solutions approach the thermodynamic limit as N increases, restoring the sharp non-equilibrium phase transition in this limit. We demonstrate how the lasing phase transition and degree of population inversion can be adjusted by simply varying the phase of the coherent driving field. The high level of quantum control presented by this microscopic model and the framework outlined here have applications to further understanding and developing nanophotonic technology.