论文标题
Riemann Zeta分布的卷积能力的渐近行为
Asymptotic behaviors of convolution powers of the Riemann zeta distribution
论文作者
论文摘要
在概率理论中,存在离散和连续的分布。一般而言,与连续的相比,我们没有离散的种类和属性的足够的种类和特性。在本文中,我们将Riemann Zeta分布视为少数已知的无限支持的已知离散分布的代表。讨论了Riemann Zeta分布的卷积能力的一些渐近行为。
In probability theory, there exist discrete and continuous distributions. Generally speaking, we do not have sufficient kinds and properties of discrete ones compared to the continuous ones. In this paper, we treat the Riemann zeta distribution as a representative of few known discrete distributions with infinite supports. Some asymptotic behaviors of convolution powers of the Riemann zeta distribution are discussed.