论文标题

在计算假设下对EPR对的平行自我测试

Parallel self-testing of EPR pairs under computational assumptions

论文作者

Fu, Honghao, Wang, Daochen, Zhao, Qi

论文摘要

自我测试是量子力学的基本特征,它允许经典的验证者强迫不信任的量子设备准备某些状态并对其进行某些测量。该标准方法至少假定两个空间分离的设备。最近,Metger和Vidick [Quantum,2021]表明,在计算假设下,单个量子设备可以进行自测。在这项工作中,我们概括了他们的结果,以在同一计算假设下的单个设备设置中对$ n $ epr对的第一个平行自我测试以及对它们进行测量。我们表明,使用Poly $(n)$资源,可以通过诚实的量子设备可忽略的概率通过概率传递我们的协议。此外,我们表明,任何以$ε$最多使协议失败的量子设备都必须为poly $(n,ε)$ - 在适当的意义上接近诚实。特别是,我们的协议可以测试计算或Hadamard基础测量张量产品的任何分布,使其适用于在计算假设下诸如独立于设备的量子密钥分布之类的应用。此外,我们的协议的简化版本是第一个只能使用经典通信有效地证明单个云量子计算机的任意数量的量子数。

Self-testing is a fundamental feature of quantum mechanics that allows a classical verifier to force untrusted quantum devices to prepare certain states and perform certain measurements on them. The standard approach assumes at least two spatially separated devices. Recently, Metger and Vidick [Quantum, 2021] showed that a single EPR pair of a single quantum device can be self-tested under computational assumptions. In this work, we generalize their results to give the first parallel self-test of $N$ EPR pairs and measurements on them in the single-device setting under the same computational assumptions. We show that our protocol can be passed with probability negligibly close to $1$ by an honest quantum device using poly$(N)$ resources. Moreover, we show that any quantum device that fails our protocol with probability at most $ε$ must be poly$(N,ε)$-close to being honest in the appropriate sense. In particular, our protocol can test any distribution over tensor products of computational or Hadamard basis measurements, making it suitable for applications such as device-independent quantum key distribution under computational assumptions. Moreover, a simplified version of our protocol is the first that can efficiently certify an arbitrary number of qubits of a single cloud quantum computer using only classical communication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源