论文标题

光谱滑绳和斑块单偶性的二元性

Stone duality for spectral sheaves and the patch monad

论文作者

Berger, Clemens, Gehrke, Mai

论文摘要

我们在光谱空间和正确的分布带上建立二元性。这是光谱空间和有界分布晶格之间经典石材二元性的融学理论扩展。光谱空间的拓扑结构是所谓的斑块拓扑结构的改进,从而在固定光谱空间上产生了绑带上的贴片单。在刚提到的二元性下,该贴片单元的代数显示与分布偏斜晶格相对应。

We establish a duality between global sheaves on spectral spaces and right distributive bands. This is a sheaf-theoretical extension of classical Stone duality between spectral spaces and bounded distributive lattices. The topology of a spectral space admits a refinement, the so-called patch topology, giving rise to a patch monad on sheaves over a fixed spectral space. Under the duality just mentioned the algebras of this patch monad are shown to correspond to distributive skew lattices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源