论文标题

合作多代理系统中的概括

Generalization in Cooperative Multi-Agent Systems

论文作者

Mahajan, Anuj, Samvelyan, Mikayel, Gupta, Tarun, Ellis, Benjamin, Sun, Mingfei, Rocktäschel, Tim, Whiteson, Shimon

论文摘要

集体智慧是几种生物体分享的基本特征。它使他们能够在我们地球上存在的各种环境条件下蓬勃发展。从蚂蚁殖民地的简单组织到人类群体中复杂的系统,集体智能对于解决复杂的生存任务至关重要。正如通常观察到的那样,这种天然系统具有其结构变化的灵活性。具体而言,当系统内的能力或代理总数变化时,它们表现出高度的概括。我们将这种现象称为组合概括(CG)。 CG是自主系统的高度理想特征,因为它可以在广泛的应用程序中提高其效用和可部署性。尽管最近针对CG的特定方面的工作对复杂领域显示出令人印象深刻的结果,但在对新型情况推广时,它们没有提供绩效保证。在这项工作中,我们阐明了CG合作多代理系统(MAS)的理论基础。具体而言,我们研究了基础动力学对代理能力的线性依赖性下的概括界限,这可以看作是对MAS的后继特征的概括。然后,我们首先扩展Lipschitz的结果,然后将奖励对团队能力的任意依赖性。最后,使用多代理强化学习的框架对各个领域的经验分析突出了对确保CG的多代理算法的重要避难所。

Collective intelligence is a fundamental trait shared by several species of living organisms. It has allowed them to thrive in the diverse environmental conditions that exist on our planet. From simple organisations in an ant colony to complex systems in human groups, collective intelligence is vital for solving complex survival tasks. As is commonly observed, such natural systems are flexible to changes in their structure. Specifically, they exhibit a high degree of generalization when the abilities or the total number of agents changes within a system. We term this phenomenon as Combinatorial Generalization (CG). CG is a highly desirable trait for autonomous systems as it can increase their utility and deployability across a wide range of applications. While recent works addressing specific aspects of CG have shown impressive results on complex domains, they provide no performance guarantees when generalizing towards novel situations. In this work, we shed light on the theoretical underpinnings of CG for cooperative multi-agent systems (MAS). Specifically, we study generalization bounds under a linear dependence of the underlying dynamics on the agent capabilities, which can be seen as a generalization of Successor Features to MAS. We then extend the results first for Lipschitz and then arbitrary dependence of rewards on team capabilities. Finally, empirical analysis on various domains using the framework of multi-agent reinforcement learning highlights important desiderata for multi-agent algorithms towards ensuring CG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源