论文标题

在简单综合体上玩公正的游戏作为皇帝和理论的扩展

Playing impartial games on a simplicial complex as an extension of the emperor sum theory

论文作者

Suetsugu, Koki

论文摘要

在本文中,我们考虑了简单综合体上的公正游戏。给定的简单络合物的每个顶点都充当公正游戏的位置。每个玩家依次选择一个简单复合体的面,对于该面部每个顶点上的每个位置,玩家都可以进行任意数量的移动。此外,玩家只能为每个顶点上的每个位置而不是在那个脸上做一个动作。我们展示了如何使用P位置长度来表征该游戏的P位置。该结果可以视为皇帝和理论的扩展。尽管皇帝总和仅允许单个组成部分的多次移动,但本研究研究了可以为多个组件做出多个移动的情况,并阐明了皇帝和理论未涵盖的领域。

In this paper, we considered impartial games on a simplicial complex. Each vertex of a given simplicial complex acts as a position of an impartial game. Each player in turn chooses a face of the simplicial complex and, for each position on each vertex of that face, the player can make an arbitrary number of moves. Moreover, the player can make only a single move for each position on each vertex, not on that face. We show how the P-positions of this game can be characterized using the P-position length. This result can be considered an extension of the emperor sum theory. While the emperor sum only allowed multiple moves for a single component, this study examines the case where multiple moves can be made for multiple components, and clarifies areas that the emperor sum theory did not cover.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源