论文标题
水下差异游戏:有限的目标狩猎任务随通信延迟
Underwater Differential Game: Finite-Time Target Hunting Task with Communication Delay
论文作者
论文摘要
这项工作考虑了为一群无人驾驶水下车辆(UUV)设计无人的目标狩猎系统,以捕捉具有高操作性的目标。差异游戏理论用于分析UUV的战略和目标之内的目标。挑战在于,UUV必须执行其控制政策,不仅要考虑狩猎团队的一致性,而且还逃避了目标的行为。为了获得满足NASH平衡的稳定反馈控制策略,我们使用Leibniz的公式构建了哈密顿功能。为了考虑进一步的水下干扰和沟通延迟,提供了经过修改的深度加固学习(DRL),以调查未知动态环境中的水下目标狩猎任务。模拟表明,考虑到通信延迟的系统,水下干扰对系统产生了很大影响。此外,一致性测试表明,UUV在相对较小的干扰范围内执行更好的一致性。
This work considers designing an unmanned target hunting system for a swarm of unmanned underwater vehicles (UUVs) to hunt a target with high maneuverability. Differential game theory is used to analyze combat policies of UUVs and the target within finite time. The challenge lies in UUVs must conduct their control policies in consideration of not only the consistency of the hunting team but also escaping behaviors of the target. To obtain stable feedback control policies satisfying Nash equilibrium, we construct the Hamiltonian function with Leibniz's formula. For further taken underwater disturbances and communication delay into consideration, modified deep reinforcement learning (DRL) is provided to investigate the underwater target hunting task in an unknown dynamic environment. Simulations show that underwater disturbances have a large impact on the system considering communication delay. Moreover, consistency tests show that UUVs perform better consistency with a relatively small range of disturbances.