论文标题

可计数的免费集号和PFA的空间

Spaces of countable free set number and PFA

论文作者

Dow, Alan, Juhasz, Istvan

论文摘要

本文的主要结果是,在PFA下,对于每个{\ em常规} space $ x $带有$ f(x)=ω$,我们有$ | x | \ le w(x)^ω$;特别是,$ w(x)\ le \ mathfrak {c} $暗示$ | x | \ le \ mathfrak {c} $。这补充了许多先前的结果,这些结果均可获得一致的示例,即使是紧凑的hausdorff spaces $ x $,$ f(x)=ω$,因此$ w(x)= \ mathfrak {c} $和$ | x | = 2^\ Mathfrak {C} $。 我们还表明,在此结果中,规律性不能削弱到Hausdorff,因为我们可以在ZFC中找到hausdorff space $ x $ at $ f(x)=ω$,因此$ w(x)= \ mathfrak {c} $和$ | x | | = 2^\ Mathfrak {C} $。实际上,此空间$ x $具有{\ em强烈的抗urysohn}(sau)属性,即任何两个无限的封闭套件都在$ x $ Intersect中,它比$ f(x)=ω$强得多。此外,$ x $中的任何非空开放式设置还具有$ 2^\ mathfrak {c} $,因此通过在没有隔离点的ZFC a sau空间中提供\ cite {jshssz}的主要问题之一。

The main result of this paper is that, under PFA, for every {\em regular} space $X$ with $F(X) = ω$ we have $|X| \le w(X)^ω$; in particular, $w(X) \le \mathfrak{c}$ implies $|X| \le \mathfrak{c}$. This complements numerous prior results that yield consistent examples of even compact Hausdorff spaces $X$ with $F(X) = ω$ such that $w(X) = \mathfrak{c}$ and $|X| = 2^\mathfrak{c}$. We also show that regularity cannot be weakened to Hausdorff in this result because we can find in ZFC a Hausdorff space $X$ with $F(X) = ω$ such that $w(X) = \mathfrak{c}$ and $|X| = 2^\mathfrak{c}$. In fact, this space $X$ has the {\em strongly anti-Urysohn} (SAU) property that any two infinite closed sets in $X$ intersect, which is much stronger than $F(X) = ω$. Moreover, any non-empty open set in $X$ also has size $2^\mathfrak{c}$, and thus answers one of the main problems of \cite{JShSSz} by providing in ZFC a SAU space with no isolated points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源