论文标题

构造时空波袋的四边形

Quadrics for structuring space-time wavepackets

论文作者

Béjot, Pierre, Kibler, Bertrand

论文摘要

时空光结构已成为控制脉冲光束传播动力学的非常强大的工具。在过去的几年中,操纵和生成光的光线分布的能力得到了显着增强,让设想在整个光学范围内的应用。到目前为止操纵的时空光学波袋通常是二维对象(一个空间维度和时间),其模式分辨光谱位于圆锥形部分。使用简单的对称性和不变性原理,我们表明这样的波袋是更一般的三维结构的特定情况,其时空频率位于二次表面上。我们提出的框架允许在这里分类在所有群体速度分散体中,以散装和波导的方式分类在各个维度中本地化的所有维度。特别强调轨道角动量时空波袋。这种前所未有的理论方法为空时光学元件的多功能综合开辟了道路。

Space-time light structuring has emerged as a very powerful tool for controlling the propagation dynamics of pulsed beam. The ability to manipulate and generate space-time distributions of light has been remarkably enhanced in past few years, letting envision applications across the entire spectrum of optics. Space-time optical wavepackets manipulated up to now are usually two-dimensional objects (one space dimension and time) whose mode-resolved spectra lie in a conical section. Using simple symmetry and invariance principles, we show that such wavepackets are particular cases of more general three-dimensional structures whose space-time frequencies lie on quadric surfaces. Our proposed framework allows here classifying space-time wavepackets localized in all dimensions, in any group-velocity dispersion regime, both in bulk and waveguides. Particular emphasis is placed on orbital angular momentum-carrying space-time wavepackets. This unprecedented theoretical approach opens the way for versatile synthesizing of space-time optics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源