论文标题
COVID-19的疫苗接种动力学的运输和最佳控制
Transport and Optimal Control of Vaccination Dynamics for COVID-19
论文作者
论文摘要
我们开发了一个数学模型,用于基于热扩散方程转移疫苗BNT162B2。然后,我们将最佳控制理论应用于提出的广义SEIR模型。我们引入了易感人群的疫苗接种,以控制Covid-19-19的流行病的传播。为此,我们使用Pontryagin的最低原理来找到最佳控制的必要最佳条件。最佳控制问题和热扩散方程是数值求解的。最后,进行了几项模拟,以研究和预测COVID-19在意大利流行病的传播。特别是,我们比较在存在和不存在疫苗接种的情况下模型。
We develop a mathematical model for transferring the vaccine BNT162b2 based on the heat diffusion equation. Then, we apply optimal control theory to the proposed generalized SEIR model. We introduce vaccination for the susceptible population to control the spread of the COVID-19 epidemic. For this, we use the Pontryagin minimum principle to find the necessary optimality conditions for the optimal control. The optimal control problem and the heat diffusion equation are solved numerically. Finally, several simulations are done to study and predict the spread of the COVID-19 epidemic in Italy. In particular, we compare the model in the presence and absence of vaccination.