论文标题
用于金属膜催化的量子蒙特卡洛法:一氧化碳吸附的水添加在Pt/al上(111),一种通往氢的途径
Quantum Monte Carlo method for metal-film catalysis: water addition to carbon monoxide adsorbed on Pt/Al(111), a route to hydrogen
论文作者
论文摘要
作为化石燃料的干净,可持续替代品的氢生产正在采取速度。即使在即将举行的奥运会上,巴黎CDG机场的容量也已停止,直到可以使用氢动力飞机为止。因此,及时处理催化选择性氢生产并优化催化剂结构。超过90%的化学生产都使用固体催化剂。这项工作描述了在铂金薄膜上的碳 - 氧化碳氧化物(CO)的吸附,并由便宜的Al(111)支持。 CO与水反应产生氢(水气移)。量子蒙特卡洛方法是唯一足够精确的方法,可以研究这种催化反应的早期步骤,该反应是在封闭式PT/AL时(111)。 许多化学反应涉及键合。此过程通常是固体表面上限速反应步骤的关键。由于Hartree-Fock和DFT方法对破坏键的破坏描述很差,因此使用了我们嵌入的活性位点方法,该工作证明了一种新型的量子蒙特卡洛(QMC)方法。 所研究的水电偏移反应步骤是在Al(111)支持的PT-Monolayer上的PRADASAD添加水。水分子仅部分解离。它的氧原子与CO与吸附的COOH和PT-H结合。这个协同的增加是限制速率的。在随后的步骤中,吸附的甲酸盐物种(带有酸性氢)分解为二氧化碳,质子迁移到PT-H后,获得了干净的产品H $ _2 $。 发现的QMC激活屏障为64.8 $ \ pm $ 1.5 kJ/mol。因此,QMC被证明是鼓励研究类似的催化系统。
Hydrogen production as a clean, sustainable replacement for fossil fuels is gathering pace. Doubling the capacity of Paris-CDG airport has been halted, even with the upcoming Olympic Games, until hydrogen powered planes can be used. It is thus timely to work on catalytic selective hydrogen production and optimise catalyst structure. Over 90 % of all chemical manufacture uses a solid catalyst. This work describes adsorption of carbon-monoxide (CO) on platinum thin films, supported by cheap Al(111). CO reacts with water to produce hydrogen (water-gas shift). Quantum Monte Carlo methods are the only ones accurate enough to investigate the early steps of this catalysed reaction at close-packed Pt/Al(111). Many chemical reactions involve bond-dissociation. This process is often the key to rate-limiting reaction steps at solid surfaces. Since bond-breaking is poorly described by Hartree-Fock and DFT methods, our embedded active site approach is used This work demonstrates a novel Quantum Monte Carlo (QMC) methodology. The water-gas shift reaction step studied is water addition to CO pre-adsorbed on a Pt-monolayer supported by Al(111). The water molecule is only partially dissociated. Its oxygen atom binds to CO giving adsorbed COOH and Pt-H. This concerted addition is rate-limiting. In subsequent steps, the adsorbed formate species (with acidic hydrogen) decomposes to carbon dioxide and, after proton migration to Pt-H, the clean product H$_2$ is obtained. The QMC activation barrier found is 64.8 $\pm$ 1.5 kJ/mol. Thus, QMC is shown to be encouraging for investigating similar catalytic systems.