论文标题

使用深度学习来识别Pauli自旋封锁

Identifying Pauli spin blockade using deep learning

论文作者

Schuff, Jonas, Lennon, Dominic T., Geyer, Simon, Craig, David L., Fedele, Federico, Vigneau, Florian, Camenzind, Leon C., Kuhlmann, Andreas V., Briggs, G. Andrew D., Zumbühl, Dominik M., Sejdinovic, Dino, Ares, Natalia

论文摘要

Pauli自旋封锁(PSB)也可以用作自旋量子量子初始化和读数的重要资源,即使在升高的温度下,也可能很难识别。我们提出了一种能够使用电荷传输测量值自动识别PSB的机器学习算法。通过使用模拟数据训练算法并使用跨设备验证,可以规避PSB数据的稀缺性。我们在硅现场效应晶体管设备上演示了我们的方法,并在不同的测试设备上报告了96%的精度,证明该方法对设备可变性是可靠的。预计该方法将在所有类型的量子点设备中使用。

Pauli spin blockade (PSB) can be employed as a great resource for spin qubit initialisation and readout even at elevated temperatures but it can be difficult to identify. We present a machine learning algorithm capable of automatically identifying PSB using charge transport measurements. The scarcity of PSB data is circumvented by training the algorithm with simulated data and by using cross-device validation. We demonstrate our approach on a silicon field-effect transistor device and report an accuracy of 96% on different test devices, giving evidence that the approach is robust to device variability. The approach is expected to be employable across all types of quantum dot devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源