论文标题
在拉格朗日语言中的动能的部分衍生物与动态的哈密顿形式主义之间的关系
Relation Between the Partial Derivatives of the Kinetic Energy in the Lagrangian and Hamiltonian Formalisms of Dynamics
论文作者
论文摘要
动态系统相对于广义坐标的动能的部分导数,因为它在拉格朗日形式主义中出现的情况不等于动能的导数相对于汉密尔顿形式上的相同坐标,但在汉密尔顿形式上的坐标,但符号有所不同。在保守系统的情况下,我们发现两个部分衍生物之间的另一个确切关系。我们还确定了另一种形式的动能,该动能相对于广义坐标的部分衍生物相同消失。
The partial derivative of the kinetic energy of a dynamical system with respect to a generalized coordinate as it appears in the Lagrangian formalism is not equal to the derivative of the kinetic energy with respect to the same coordinate in the Hamiltonian formalism but differs by a sign. We find another exact relation between the two partial derivatives in the case of a conservative system. We also identify another form of kinetic energy whose partial derivative with respect to a generalized coordinate vanishes identically.