论文标题
Isoscal巨型单子共振在Ca同位素链中的演变
Evolution of the isoscalar giant monopole resonance in the Ca isotope chain
论文作者
论文摘要
在钙同位素链报告相互矛盾的结果中,有关等相巨型单极共振(ISGMR)演变的最新研究。一项研究表明,单极共振能,因此核心$ k_ {a} $的不可压缩性随质量增加而增加,这意味着$k_τ$是核不可压缩性的不对称项,具有正值。另一项研究报告说,能量力矩的趋势较弱,导致$k_τ$的普遍接受的负值。提供了对CA同位素链中ISGMR中心区域的独立测量,以更好地了解可能系统趋势的起源。从一系列钙靶($ \ mathrm {^{40,42,44,48} ca} $)的无颗粒分散的$α$颗粒($ \ mathrm {^{^{40,42,44,48} $),在包括0 $^\ circ $,包括0 $^\ circ $的小散射角度上观察到了在南非南非Ithemba Labs的K600磁性光谱仪中分析的动量。使用光谱差(DOS)技术获得了跨越9.5至25.5 MeV的激发能量范围的单极强度。 $ e0 $强度分布的$^{40,42,44} $ CA的结构与先前测量的结果非常吻合,该测量支持能源矩的趋势较弱的趋势,而在$^{48} $ CA的情况下,没有两个数据集同意。尽管从不同的研究中的$ e0 $强度分布的结构特征变化,但我们发现所有数据集的矩比在兴奋能量范围内定义了主要共振区域的ISGMR强度计算得出的,最多只能显示出对质量增加的系统敏感性。在核不可压缩性中观察到的不同趋势是由对主要共振区域以外的$ E0强度的贡献引起的,尤其是高激发能。
Two recent studies of the evolution of the isoscalar giant monopole resonance (ISGMR) within the calcium isotope chain report conflicting results. One study suggests that the monopole resonance energy, and thus the incompressibility of the nucleus $K_{A}$ increase with mass, which implies that $K_τ$, the asymmetry term in the nuclear incompressibility, has a positive value. The other study reports a weak decreasing trend of the energy moments, resulting in a generally accepted negative value for $K_τ$. An independent measurement of the central region of the ISGMR in the Ca isotope chain is provided to gain a better understanding of the origin of possible systematic trends. Inelastically scattered $α$ particles from a range of calcium targets ($\mathrm{^{40,42,44,48}Ca}$), observed at small scattering angles including 0$^\circ$, were momentum analyzed in the K600 magnetic spectrometer at iThemba LABS, South Africa. Monopole strengths spanning an excitation-energy range between 9.5 and 25.5 MeV were obtained using the difference-of-spectra (DoS) technique. The structure of the $E0$ strength distributions of $^{40,42,44}$Ca agrees well with the results from the previous measurement that supports a weak decreasing trend of the energy moments, while no two datasets agree in the case of $^{48}$Ca. Despite the variation in the structural character of $E0$ strength distribution from different studies, we find for all datasets that the moment ratios, calculated from the ISGMR strength in the excitation-energy range that defines the main resonance region, display at best only a weak systematic sensitivity to a mass increase. Different trends observed in the nuclear incompressibility are caused by contributions to the $E0$ strength outside of the main resonance region, and in particular for high excitation energies.