论文标题
Locunet:使用无线电图和深度学习的快速城市定位
LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning
论文作者
论文摘要
本文涉及在密集的城市场景中在蜂窝网络中的本地化问题。全球导航卫星系统(GNSS)通常在城市环境中表现较差,在城市环境中,视线线条件的可能性很低,因此需要替代定位方法才能良好准确。我们提出了locunet:一种用于定位的深度学习方法,仅基于基本站(BSS)的接收信号强度(RSS),该方法不需要在用户设备相对于设备标准操作的用户设备的计算复杂性提高,这与依赖于到达时间或到达信息的时间的方法不同。在提出的方法中,用户为本地化报告了可能位于云中的RSS从BSS到中央处理单元(CPU)。另外,可以在用户本地执行本地化。使用BSS的估算的Pathloss无线电图,Locunet可以以最先进的准确性来定位用户,并在无线电图中享有很高的鲁棒性。提出的方法不需要对环境进行预采样。借助RadiOnet(基于神经网络的无线电图估计器),适用于实时应用。我们还介绍了两个数据集,这些数据集允许在现实的城市环境中对RSS的数值比较以及到达时间(TOA)方法。
This paper deals with the problem of localization in a cellular network in a dense urban scenario. Global Navigation Satellite Systems (GNSS) typically perform poorly in urban environments, where the likelihood of line-of-sight conditions is low, and thus alternative localization methods are required for good accuracy. We present LocUNet: A deep learning method for localization, based merely on Received Signal Strength (RSS) from Base Stations (BSs), which does not require any increase in computation complexity at the user devices with respect to the device standard operations, unlike methods that rely on time of arrival or angle of arrival information. In the proposed method, the user to be localized reports the RSS from BSs to a Central Processing Unit (CPU), which may be located in the cloud. Alternatively, the localization can be performed locally at the user. Using estimated pathloss radio maps of the BSs, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the radio maps. The proposed method does not require pre-sampling of the environment; and is suitable for real-time applications, thanks to the RadioUNet, a neural network-based radio map estimator. We also introduce two datasets that allow numerical comparisons of RSS and Time of Arrival (ToA) methods in realistic urban environments.