论文标题

ho hava的波带 - lifshitz重力耦合到量规载体

Wave zone of the Hořava--Lifshitz gravity coupled to a gauge vector

论文作者

Mestra-Páez, Jarvin, Restuccia, Álvaro, Tello-Ortiz, Francisco

论文摘要

我们考虑在低能量状态下的动力学共形点,在非预测的ho红叶叶夫理论中考虑了各向异性重力量子矢量耦合。我们表明,该理论的规范表述在其约束下进行了评估,仅根据物理自由度就降低到规范的表述。相应的减少汉密尔顿定义了系统的ADM能量。我们获得了其明确的表达,并讨论了它与爱因斯坦 - 马克斯韦理论的ADM能量的关系。然后,我们证明,在这个理论中,存在一个定义明确的波区域。在其中,自由度的物理程度,与引力部门相关的横向 - 无跟踪的张力模式以及与仪表矢量相互作用相关的横向矢量模式满足独立的线性波方程,而无需它们之间的任何耦合。各向异性理论的牛顿部分在来源附近非常相关,不会影响波区域自由度的自由传播。事实证明,激发,引力和矢量性均以相同的速度$ \sqrtβ$传播,其中$β$是叶面三维叶子的标量曲率的耦合参数,定义了ho树 - 叶 - liffifshitz peenry。

We consider the anisotropic gravity-gauge vector coupling in the non-projectable Hořava-Lifshitz theory at the kinetic conformal point, in the low energy regime. We show that the canonical formulation of the theory, evaluated at its constraints, reduces to a canonical formulation solely in terms of the physical degrees of freedom. The corresponding reduced Hamilton defines the ADM energy of the system. We obtain its explicit expression and discuss its relation to the ADM energy of the Einstein-Maxwell theory. We then show that there exists, in this theory, a well--defined wave zone. In it, the physical degrees of freedom ı.e., the transverse--traceless tensorial modes associated to the gravitational sector and the transverse vectorial modes associated to the gauge vector interaction satisfy independent linear wave equations, without any coupling between them. The Newtonian part of the anisotropic theory, very relevant near the sources, does not affect the free propagation of the physical degrees of freedom in the wave zone. It turns out that both excitations, the gravitational and the vectorial one, propagate with the same speed $\sqrtβ$, where $β$ is the coupling parameter of the scalar curvature of the three dimensional leaves of the foliation defining the Hořava--Lifshitz geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源