论文标题

原始元素对有限场的立方扩展中有规定的痕迹

Primitive element pairs with a prescribed trace in the cubic extension of a finite field

论文作者

Booker, Andrew R., Cohen, Stephen D., Leong, Nicol, Trudgian, Tim

论文摘要

我们证明,对于任何主要功率$ q \ notin \ {3,4,5 \} $,Cutic Extension $ \ Mathbb {f} _ {q^3} $ $ \ textrm {tr} _ {\ mathbb {f} _ {q^3}/\ mathbb {f} _q} _q}(ξ)= a $对于任何处方的$ a \ in \ mathbb {f} _q $。这完成了Gupta,Sharma和Cohen的猜想的证明,这些证明是在任意程度$ n \ ge3 $的延伸期间就类似问题的证明。

We prove that for any prime power $q\notin\{3,4,5\}$, the cubic extension $\mathbb{F}_{q^3}$ of the finite field $\mathbb{F}_q$ contains a primitive element $ξ$ such that $ξ+ξ^{-1}$ is also primitive, and $\textrm{Tr}_{\mathbb{F}_{q^3}/\mathbb{F}_q}(ξ)=a$ for any prescribed $a\in\mathbb{F}_q$. This completes the proof of a conjecture of Gupta, Sharma, and Cohen concerning the analogous problem over an extension of arbitrary degree $n\ge3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源