论文标题
有限的$ n $主循环方程的新推导,用于格子杨米尔斯
A new derivation of the finite $N$ master loop equation for lattice Yang-Mills
论文作者
论文摘要
我们提供了有限$ n $ master循环方程的新派生,该方程式是lattice yang-mills理论,其结构组$ so(n)$,$ u(n)$或$ su(n)$。 Chatterjee最初在\ cite {cha}中证明了$(n)$ case,$ su(n)$在jafarov \ cite \ cite {jafar}的后续工作中分析。我们的方法基于Langevin Dynamic,这是配置多种多样的SDE,并通过Itô公式产生了一个简单的证明。
We give a new derivation of the finite $N$ master loop equation for lattice Yang-Mills theory with structure group $SO(N)$, $U(N)$ or $SU(N)$. The $SO(N)$ case was initially proved by Chatterjee in \cite{Cha}, and $SU(N)$ was analyzed in a follow-up work by Jafarov \cite{Jafar}. Our approach is based on the Langevin dynamic, an SDE on the manifold of configurations, and yields a simple proof via Itô's formula.