论文标题
在三维狄拉克半金属硅中,时间交流对称性破坏超导性
Time-Reversal Symmetry Breaking Superconductivity in Three-Dimensional Dirac Semimetallic Silicides
论文作者
论文摘要
损坏的时间反转对称性的超导体可以说是实现高度渴望的拓扑超导性的最有希望的场所之一,这对于耐断层量子计算至关重要。在这里,通过使用广泛的Muon-Spin松弛和旋转测量值,我们报告说,在超导过渡时,异构结构硅剂超导体(TA,NB)ossi会自发打破时间反转的对称性,同时出人意料地显示出完全传播的超导电器的完全传播超导性的特征。第一原理计算表明(TA,NB)OSSI是由非词法对称性保护的三维狄拉克半学。利用这些材料的特殊低对称晶体结构的优势,我们进行了详细的理论计算,以确定两者(TA,NB)OSSI的超导基态很可能是一个不合时宜的三胞胎状态。
Superconductors with broken time-reversal symmetry represent arguably one of the most promising venues for realizing highly sought-after topological superconductivity that is vital to fault-tolerant quantum computation. Here, by using extensive muon-spin relaxation and rotation measurements, we report that the isostructural silicide superconductors (Ta, Nb)OsSi spontaneously break time-reversal symmetry at the superconducting transition while surprisingly showing a fully-gapped superconductivity characteristic of conventional superconductors. The first-principles calculations show that (Ta, Nb)OsSi are three-dimensional Dirac semimetals protected by nonsymmorphic symmetries. Taking advantage of the exceptional low symmetry crystal structure of these materials, we have performed detailed theoretical calculations to establish that the superconducting ground state for both (Ta, Nb)OsSi is most likely a nonunitary triplet state.