论文标题

用于探索小极化配置空间的机器学习

Machine Learning for Exploring Small Polaron Configurational Space

论文作者

Birschitzky, Viktor C., Ellinger, Florian, Diebold, Ulrike, Reticcioli, Michele, Franchini, Cesare

论文摘要

极性缺陷在材料中无处不在,并且在涉及载体迁移率,电荷转移和表面反应性的许多过程中起着重要作用。确定小极地的空间分布对于了解材料特性和功能至关重要。这需要对配置空间进行探索,在使用标准第一原理方法时,这在计算上是要求的,并且对于许多孔孔系统技术上的效果。在这里,我们提出了一个机器学习(ML)加速搜索,该搜索比较了不同极性模式的能量稳定性并确定基态配置。基于内核回归的ML模型是在通过使用分子动力学模拟或随机抽样方法获得的最小初始极性模式集中的密度功能理论(DFT)计算产生的数据库中训练的。为了在训练数据和配置稳定性之间建立有效的映射,我们设计了简单的描述符,以对极性子和充电点缺陷之间的相互作用进行建模。所提出的DFT+ML协议在这里用于探索数百万个不同系统的极性配置,即氧缺陷的金红石Tio $ _2 $(110)和nb-Doped Srtio $ _3 $(001)。我们的数据表明,ML辅助搜索正确地将地面极化子模式分为个性化,提出了训练中未访问的二极管构型,可用于有效地确定在任何电荷浓度下极性分布的最佳分布。

Polaron defects are ubiquitous in materials and play an important role in many processes involving carrier mobility, charge transfer and surface reactivity. Determining the spatial distribution of small polarons is essential to understand materials properties and functionalities. This requires an exploration of the configurational space, which is computationally demanding when using standard first principles methods, and technically prohibitive for many-polaron systems. Here, we propose a machine-learning (ML) accelerated search that compares the energy stability of different polaron patterns and determines the ground state configuration. The kernel-regression based ML model is trained on databases generated by density functional theory (DFT) calculations on a minimal set of initial polaron patterns, obtained by using either molecular dynamics simulations or a random sampling approach. To establish an efficient mapping between training data and configuration stability we designed simple descriptors that model the interactions among polarons and charged point defects. The proposed DFT+ML protocol is used here to explore millions of polaron configurations for two different systems, oxygen defective rutile TiO$_2$(110) and Nb-doped SrTiO$_3$(001). Our data shows that the ML-aided search correctly individuates the ground-state polaron patterns, proposes polaronic configurations not visited in the training and can be used to efficiently determine the optimal distribution of polarons at any charge concentration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源