论文标题

神经变化:可视化神经变性的框架

NeuRegenerate: A Framework for Visualizing Neurodegeneration

论文作者

Boorboor, Saeed, Mathew, Shawn, Ananth, Mala, Talmage, David, Role, Lorna W., Kaufman, Arie E.

论文摘要

高分辨率显微镜的最新进展使科学家能够更好地了解潜在的大脑连接性。但是,由于只能在一个时间点上对生物标本进行成像的限制,因此使用人群分析研究对神经预测的变化仅限于一般观察。在本文中,我们介绍了神经金属,这是一个新颖的端到端框架,用于预测和可视化受试者内神经纤维形态的变化,用于特定的年龄时间点。为了预测预测,我们提出了一个基于周期相关的对抗性网络的深度学习网络,该网络涉及较大的大脑结构,以遍及大脑的特征。我们通过实现密度乘法器和新的损失函数(称为幻觉损失)来提高神经元结构的重建质量。此外,我们在训练训练Pipeline the Neureganerator中引入了一个空间矛盾模块,以减轻由于大量输入量而导致的伪像。我们表明,神经组织在预测神经元结构时具有94%的重建精度。最后,为了可视化预测的预测变化,Neuregenerate提供了两种模式:(1)神经社会同时可视化神经元预测,跨年龄时间点的结构的差异,以及(2)NeuroMorph,一种基于容器的变形技术,以互动从一个年龄时代到另一个年龄点的结构转换,从而可视化。我们的框架专为使用宽场显微镜获得的体积而设计。我们通过可视化小鼠大脑和老式标本之间小鼠大脑胆碱能系统中神经元纤维的结构变化来展示我们的框架。

Recent advances in high-resolution microscopy have allowed scientists to better understand the underlying brain connectivity. However, due to the limitation that biological specimens can only be imaged at a single timepoint, studying changes to neural projections is limited to general observations using population analysis. In this paper, we introduce NeuRegenerate, a novel end-to-end framework for the prediction and visualization of changes in neural fiber morphology within a subject, for specified age-timepoints.To predict projections, we present neuReGANerator, a deep-learning network based on cycle-consistent generative adversarial network (cycleGAN) that translates features of neuronal structures in a region, across age-timepoints, for large brain microscopy volumes. We improve the reconstruction quality of neuronal structures by implementing a density multiplier and a new loss function, called the hallucination loss.Moreover, to alleviate artifacts that occur due to tiling of large input volumes, we introduce a spatial-consistency module in the training pipeline of neuReGANerator. We show that neuReGANerator has a reconstruction accuracy of 94% in predicting neuronal structures. Finally, to visualize the predicted change in projections, NeuRegenerate offers two modes: (1) neuroCompare to simultaneously visualize the difference in the structures of the neuronal projections, across the age timepoints, and (2) neuroMorph, a vesselness-based morphing technique to interactively visualize the transformation of the structures from one age-timepoint to the other. Our framework is designed specifically for volumes acquired using wide-field microscopy. We demonstrate our framework by visualizing the structural changes in neuronal fibers within the cholinergic system of the mouse brain between a young and old specimen.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源