论文标题

通过大规模并行性加速质量多样性

Accelerated Quality-Diversity through Massive Parallelism

论文作者

Lim, Bryan, Allard, Maxime, Grillotti, Luca, Cully, Antoine

论文摘要

质量多样性(QD)优化算法是一种众所周知的方法,可以产生大量的不同质量解决方案。但是,QD算法源自进化计算,是基于人群的方法,已知可以数据介于数据范围,并且需要大量的计算资源。当在解决方案评估成本高昂的应用中使用时,QD算法会变慢。加快QD算法的常见方法是通过在机器人技术中使用物理模拟器并行评估解决方案。但是,这种方法仅限于几十个并行评估,因为大多数物理模拟器只能通过更多的CPU并行并行。随着在加速器上运行的模拟器的最新进展,现在可以在单个GPU/TPU上并行进行数千个评估。在本文中,我们提出了QDAX,这是一个加速的地图精英实现,该实现利用了加速器上的大规模并行性,以使QD算法更易于访问。我们表明,QD算法是利用硬件加速度进度的理想候选者。我们证明,QD算法可以在交互式时间表上进行大规模并行性扩展,而对性能没有任何显着影响。在标准优化函数和四个神经进化基准环境之间的结果表明,实验跑步时间通过大小的两个因素降低,将计算天数转化为分钟。更令人惊讶的是,我们观察到将世代数量减少了两个数量级,因此谱系明显较短不会影响QD算法的性能。这些结果表明,QD现在可以从硬件加速度中受益,这对深度学习的绽放做出了重大贡献。

Quality-Diversity (QD) optimization algorithms are a well-known approach to generate large collections of diverse and high-quality solutions. However, derived from evolutionary computation, QD algorithms are population-based methods which are known to be data-inefficient and requires large amounts of computational resources. This makes QD algorithms slow when used in applications where solution evaluations are computationally costly. A common approach to speed up QD algorithms is to evaluate solutions in parallel, for instance by using physical simulators in robotics. Yet, this approach is limited to several dozen of parallel evaluations as most physics simulators can only be parallelized more with a greater number of CPUs. With recent advances in simulators that run on accelerators, thousands of evaluations can now be performed in parallel on single GPU/TPU. In this paper, we present QDax, an accelerated implementation of MAP-Elites which leverages massive parallelism on accelerators to make QD algorithms more accessible. We show that QD algorithms are ideal candidates to take advantage of progress in hardware acceleration. We demonstrate that QD algorithms can scale with massive parallelism to be run at interactive timescales without any significant effect on the performance. Results across standard optimization functions and four neuroevolution benchmark environments shows that experiment runtimes are reduced by two factors of magnitudes, turning days of computation into minutes. More surprising, we observe that reducing the number of generations by two orders of magnitude, and thus having significantly shorter lineage does not impact the performance of QD algorithms. These results show that QD can now benefit from hardware acceleration, which contributed significantly to the bloom of deep learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源