论文标题
Campana和Peternell的奇异指标和猜想
Singular metrics and a conjecture by Campana and Peternell
论文作者
论文摘要
Campana和Peternell的一个猜想说,如果$ k_x $的正倍与有效的除数$ d $加上伪有效的除数,那么$ x $的kodaira尺寸至少应与$ d $ $ d $的IITAKA尺寸一样大。这是对非泛滥猜想的非常有用的概括(情况$ d = 0 $)。我们使用有关Pluri-Adhechaint捆绑包的奇异指标的最新工作,以表明Campana-Peternell的猜想几乎等同于非泛滥的猜想。
A conjecture by Campana and Peternell says that if a positive multiple of $K_X$ is linearly equivalent to an effective divisor $D$ plus a pseudo-effective divisor, then the Kodaira dimension of $X$ should be at least as big as the Iitaka dimension of $D$. This is a very useful generalization of the non-vanishing conjecture (which is the case $D = 0$). We use recent work about singular metrics on pluri-adjoint bundles to show that the Campana-Peternell conjecture is almost equivalent to the non-vanishing conjecture.