论文标题

n-和p掺杂的核壳纳米线的带结构

Band structure of n- and p-doped core-shell nanowires

论文作者

Vezzosi, Andrea, Bertoni, Andrea, Goldoni, Guido

论文摘要

我们研究了用于N-和P掺杂的调制型GAAS/藻类核心纳米线的电子带结构。我们开发了一种8频伯特·福尔曼K.P哈密顿式方法,以描述任意组成,生长方向和掺杂的异质结构纳米线中的耦合传导和价带。库仑与电子/孔气体的相互作用在平均场自一致的方法中考虑到。我们通过有限元方法将随后的多波段包膜函数和泊松方程映射到优化的,不均匀的真实空间网格。在不同的兴奋剂方面获得了自洽的电荷密度,单粒子子带,状态密度和吸收光谱。对于N掺杂样品,电子气体的大量重组以增加掺杂的掺杂导致在核心壳界面上形成准1D电子通道。孔状态的强孔/轻孔耦合导致非抛物线分散体具有质量反转,类似于平面结构,它们持续在大掺杂物处,从而导致直接的LH和间接HH间隙。在P掺杂样品中,孔气体形成几乎各向同性的环状云,用于大量掺杂。在这里,由于定位的增加,HH和LH状态不偶发,质量反转发生在阈值密度下。在固定掺杂作为温度的函数时,在固定掺杂时获得了类似的进化。我们表明,可以在线性极化光吸收的各向异性中列出条带结构演变的特征。

We investigate the electronic band structure of modulation-doped GaAs/AlGaAs core-shell nanowires for both n- and p-doping. We developed an 8-band Burt-Foreman k.p Hamiltonian approach to describe coupled conduction and valence bands in heterostructured nanowires of arbitrary composition, growth directions, and doping. Coulomb interactions with the electron/hole gas are taken into account within a mean-field self-consistent approach. We map the ensuing multi-band envelope function and Poisson equations to optimized, non-uniform real-space grids by the finite element method. Self-consistent charge density, single-particle subbands, density of states and absorption spectra are obtained at different doping regimes. For n-doped samples, the large restructuring of the electron gas for increasing doping results in the formation of quasi-1D electron channels at the core-shell interface. Strong heavy-hole/light-hole coupling of hole states leads to non parabolic dispersions with mass inversion, similarly to planar structures, which persist at large dopings, giving rise to direct LH and indirect HH gaps. In p-doped samples the hole gas forms an almost isotropic, ring-like cloud for a large range of doping. Here, as a result of the increasing localization, HH and LH states uncouple, and mass inversion takes place at a threshold density. A similar evolution is obtained at fixed doping as a function of temperature. We show that signatures of the evolution of the band structure can be singled out in the anisotropy of linearly polarized optical absorption.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源