论文标题
在半半弦上的原始限制模块类别
Proto-exact categories of modules over semirings and hyperrings
论文作者
论文摘要
由Dyckerhoff和Kapranov引入的\ Emph {Proto-Exact类别}是Quillen精确类别的概括,为定义代数K理论和HALL代数提供了一个框架,并在\ emph {non-daddistive}设置中定义了框架。这种形式主义非常适合对物体具有强烈组合风味的类别的研究。 在本文中,我们表明,在半几何形状中获得了突出的代数结构,模块的类别 - 代数结构 - 携带原始脱离结构。 在第一部分中,我们证明了半段模块的类别配备了原始纯粹的结构。基于半掌握半肌的模块与矩形有很强的连接。我们还证明,代数格的类别$ \ MATHCAL {l} $具有原始的结构,此外,由有限lattices组成的$ \ Mathcal {l} $的子类别等于有限的$ \ \ nathbb {b} $ - 模型 - excact类别$ \ mathbb {b} $是\ emph {boolean semifield}。我们还从这个角度讨论了$ \ Mathcal {L} $与几何晶格(简单的矩形)之间的一些关系。 在第二部分中,我们证明了超环上的模块类别具有原始灭绝结构。对于\ emph {krasner hyperfield} $ \ mathbb {k} $的有限模块,有限的$ \ mathbb {k} $ - 模块和有限的发病率几何产生的众所周知的关系产生了精确序列的组合解释。
\emph{Proto-exact categories}, introduced by Dyckerhoff and Kapranov, are a generalization of Quillen exact categories which provide a framework for defining algebraic K-theory and Hall algebras in a \emph{non-additive} setting. This formalism is well-suited to the study of categories whose objects have strong combinatorial flavor. In this paper, we show that the categories of modules over semirings and hyperrings - algebraic structures which have gained prominence in tropical geometry - carry proto-exact structures. In the first part, we prove that the category of modules over a semiring is equipped with a proto-exact structure; modules over an idempotent semiring have a strong connection to matroids. We also prove that the category of algebraic lattices $\mathcal{L}$ has a proto-exact structure, and furthermore that the subcategory of $\mathcal{L}$ consisting of finite lattices is equivalent to the category of finite $\mathbb{B}$-modules as proto-exact categories, where $\mathbb{B}$ is the \emph{Boolean semifield}. We also discuss some relations between $\mathcal{L}$ and geometric lattices (simple matroids) from this perspective. In the second part, we prove that the category of modules over a hyperring has a proto-exact structure. In the case of finite modules over the \emph{Krasner hyperfield} $\mathbb{K}$, a well-known relation between finite $\mathbb{K}$-modules and finite incidence geometries yields a combinatorial interpretation of exact sequences.