论文标题

多出输出物理信息的神经网络,用于不确定性的前进和逆PDE问题

Multi-Output Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Uncertainties

论文作者

Yang, Mingyuan, Foster, John T.

论文摘要

物理知识的神经网络(PINN)最近已用于解决由部分微分方程(PDE)控制的各种计算问题。在本文中,我们提出了一个多输出物理信息的神经网络(MO-PINN),该神经网络可以为前向和逆PDE问题提供不确定性分布的解决方案,并带有嘈杂的数据。在此框架中,首先将嘈杂数据引起的不确定性转化为有关使用Bootstrap方法进行先前噪声分布的多个测量,然后设计神经网络的输出旨在满足测量值以及基本的物理定律。在培训结束时,可以在训练结束时获得目标参数的后验估计,以进一步用于量化,并可以更确定地进行确定,并确定量化和决策。在本文中,通过一系列数值实验(包括线性和非线性,正向和反问题)证明了Mo-Pinns。结果表明,Mo-Pinn能够通过嘈杂的数据提供准确的预测。此外,我们还证明了Mo-Pinn的预测和后验分布与传统的有限元方法(FEM)求解器和Monte Carlo方法的解决方案一致,只有相同的数据和先验知识。最后,我们表明可以将其他统计知识纳入培训中,以改善预测。

Physics-informed neural networks (PINNs) have recently been used to solve various computational problems which are governed by partial differential equations (PDEs). In this paper, we propose a multi-output physics-informed neural network (MO-PINN) which can provide solutions with uncertainty distributions for both forward and inverse PDE problems with noisy data. In this framework, the uncertainty arising from the noisy data is first translated into multiple measurements regarding the prior noise distribution using the bootstrap method, and then the outputs of neural networks are designed to satisfy the measurements as well as the underlying physical laws.The posterior estimation of target parameters can be obtained at the end of training, which can be further used for uncertainty quantification and decision making. In this paper, MO-PINNs are demonstrated with a series of numerical experiments including both linear and nonlinear, forward and inverse problems. The results show that MO-PINN is able to provide accurate predictions with noisy data.In addition, we also demonstrate that the prediction and posterior distributions from MO-PINNs are consistent with the solutions from traditional a finite element method (FEM) solver and Monte Carlo methods given the same data and prior knowledge. Finally, we show that additional statistical knowledge can be incorporated into the training to improve the prediction if available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源