论文标题

MV-Datalog+ - :有效的基于规则的推理,具有不确定的观察

MV-Datalog+-: Effective Rule-based Reasoning with Uncertain Observations

论文作者

Lanzinger, Matthias, Sferrazza, Stefano, Gottlob, Georg

论文摘要

现代应用程序结合了来自各种来源的信息。通常,其中一些来源(例如机器学习系统)并非严格二进制,而是与一定程度的(缺乏)对观察的信心有关。我们将MV-datalog和MV-Datalog+ - 作为DataLog和DataLog+ - 的扩展,分别为无限值Lukasiewicz逻辑L作为语言的模糊语义,以在这种情况下发生这种不确定的观察结果,以有效地推理。我们表明,MV-Datalog的语义表现出与DataLog相似的模型理论特性。特别是,我们表明(模糊)需要通过最小模型来决定。我们表明,当它们存在时,这种最小模型是唯一的(当存在时),并且可以通过线性优化问题来表征定点过程的输出。在此表征的基础上,我们建议针对头部生存量化的规则类似的多元估值语义,从而扩展了Datalog+ - 。本文正在考虑在TPLP中接受。

Modern applications combine information from a great variety of sources. Oftentimes, some of these sources, like Machine-Learning systems, are not strictly binary but associated with some degree of (lack of) confidence in the observation. We propose MV-Datalog and MV-Datalog+- as extensions of Datalog and Datalog+-, respectively, to the fuzzy semantics of infinite-valued Lukasiewicz logic L as languages for effectively reasoning in scenarios where such uncertain observations occur. We show that the semantics of MV-Datalog exhibits similar model-theoretic properties as Datalog. In particular, we show that (fuzzy) entailment can be decided via minimal fuzzy models. We show that when they exist, such minimal fuzzy models are unique (when they exist) and can be characterised in terms of a linear optimisation problem over the output of a fixed-point procedure. On the basis of this characterisation, we propose similar many-valued semantics for rules with existential quantification in the head, extending Datalog+-. This paper is under consideration for acceptance in TPLP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源