论文标题

强大的音频异常检测

Robust Audio Anomaly Detection

论文作者

Lee, Wo Jae, Helwani, Karim, Krishnaswamy, Arvindh, Tenneti, Srikanth

论文摘要

我们提出了一个异常鲁棒的多元时间序列模型,该模型可用于根据嘈杂的训练数据来检测以前看不见的异常声音。提出的方法不假定训练数据集中标记为异常的存在,而是使用一种新颖的深神经网络体系结构来学习多个分辨率的多变量时间序列的时间动态,同时在训练数据集中污染了稳定的。时间动力学是使用带有注意机制增强的复发层建模的。这些经常性层建立在卷积层的顶部,允许网络以多种分辨率提取功能。网络的输出是一个离群的鲁棒概率密度函数,它对时间序列历史记录进行了建模未来样本的条件概率。使用其他多解决架构的最新方法与我们提出的方法形成鲜明对比。我们使用公开可用的机器声音数据集验证解决方案。我们通过与几种最新模型进行比较,证明了方法在异常检测中的有效性。

We propose an outlier robust multivariate time series model which can be used for detecting previously unseen anomalous sounds based on noisy training data. The presented approach doesn't assume the presence of labeled anomalies in the training dataset and uses a novel deep neural network architecture to learn the temporal dynamics of the multivariate time series at multiple resolutions while being robust to contaminations in the training dataset. The temporal dynamics are modeled using recurrent layers augmented with attention mechanism. These recurrent layers are built on top of convolutional layers allowing the network to extract features at multiple resolutions. The output of the network is an outlier robust probability density function modeling the conditional probability of future samples given the time series history. State-of-the-art approaches using other multiresolution architectures are contrasted with our proposed approach. We validate our solution using publicly available machine sound datasets. We demonstrate the effectiveness of our approach in anomaly detection by comparing against several state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源