论文标题
$α-\ Mathcal {t} _3 $模型的有限温度等离子体,阻尼和集体行为
Finite-temperature plasmons, damping and collective behavior for $α-\mathcal{T}_3$ model
论文作者
论文摘要
我们已经对电子易感性,极化性,等离子体,它们的阻尼率以及具有平坦带的Pseudospin-1 Dirac锥材料的静态筛选进行了彻底的理论和数值研究。这包括计算在任意温度下的极化函数,等离激子分散及其阻尼速率,并获得分析近似值长波长极限,低温和高温。我们证明,极化函数的积分转换不能直接用于骰子晶格,从而揭示了一些基本属性和平面带分散模型的重要适用性限制。在$ k_b t \ ll e_f $时,温度诱导的极化函数和等离子的变化来自化学电位和费米能之间的不匹配。我们还获得了一系列封闭形式的半分析表达式,用于在任何温度下使用任意$α-\ MATHCAL {T} _3 $材料的静态限制,并在任何温度下具有精确的分析公式,用于高,低和零温度限制,这对于所有类型的运输和筛选平面型号的运输和筛选都非常重要。
We have conducted a thorough theoretical and numerical investigation of the electronic susceptibility, polarizability, plasmons, their damping rates, as well as the static screening in pseudospin-1 Dirac cone materials with a flat band, or for a general $α- \mathcal{T}_3$ model, at finite temperatures. This includes calculating the polarization function, plasmon dispersions and their damping rates at arbitrary temperatures and obtaining analytical approximations the long wavelength limit, low and high temperatures. We demonstrate that the integral transformation of the polarization function cannot be used directly for a dice lattice revealing some fundamental properties and important applicability limits of the flat band dispersions model. At $k_B T \ll E_F$, the largest temperature-induced change of the polarization function and plasmons comes from the mismatch between the chemical potential and the Fermi energy. We have also obtained a series of closed-form semi-analytical expressions for the static limit of the polarization function of an arbitrary $α- \mathcal{T}_3$ material at any temperature with exact analytical formulas for the high, low and zero temperature limits which is of tremendous importance for all types of transport and screening calculations for the flat band Dirac materials.