论文标题
BC-Z:机器人模仿学习的零击任务概括
BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning
论文作者
论文摘要
在本文中,我们研究了使基于视觉的机器人操纵系统推广到新任务的问题,这是机器人学习中的长期挑战。我们从模仿学习的角度应对挑战,旨在研究如何扩展和扩大所收集的数据可以促进这种概括。为此,我们开发了一个交互式和灵活的模仿学习系统,可以从演示和干预措施中学习,并可以根据不同形式的信息来传达任务,包括自然语言的预训练的嵌入或执行任务的人类视频。当将数据收集在真实机器人上扩展到100多个不同的任务时,我们发现该系统可以执行24个看不见的操纵任务,平均成功率为44%,而没有任何机器人演示这些任务。
In this paper, we study the problem of enabling a vision-based robotic manipulation system to generalize to novel tasks, a long-standing challenge in robot learning. We approach the challenge from an imitation learning perspective, aiming to study how scaling and broadening the data collected can facilitate such generalization. To that end, we develop an interactive and flexible imitation learning system that can learn from both demonstrations and interventions and can be conditioned on different forms of information that convey the task, including pre-trained embeddings of natural language or videos of humans performing the task. When scaling data collection on a real robot to more than 100 distinct tasks, we find that this system can perform 24 unseen manipulation tasks with an average success rate of 44%, without any robot demonstrations for those tasks.