论文标题

多种选择之间的个性化治疗选择的决策曲线分析

Decision curve analysis for personalized treatment choice between multiple options

论文作者

Chalkou, Konstantina, Vickers, Andrew J., Pellegrini, Fabio, Manca, Andrea, Salanti, Georgia

论文摘要

决策曲线分析可用于确定用于治疗益处的个性化模型是否会带来更好的临床决策。已经描述了使用单个RCT的数据来估计治疗益处的决策曲线分析方法。我们的主要目标是将决策曲线分析方法扩展到存在几种治疗选择的情况,并且有关其影响的证据来自一组试验,该试验使用网络荟萃分析(NMA)合成。我们描述了使用NMA中合成的研究的证据来估计预测模型净益处所需的步骤。我们展示了如何比较个性化与一定大小的治疗决策策略,例如“无”或“使用特定治疗”策略进行“治疗”或“治疗所有患者”。然后,可以为一个合理的阈值概率范围绘制每个策略的净福利,以揭示最有用的策略。我们将方法应用于NMA预测模型,用于复发多发性硬化症,可用于在Natalizumab,富马酸二甲基二甲基二甲基二甲基二甲基二甲基,乙酸丙酯和安慰剂之间进行选择。我们使用每种可用处理的多个阈值组合说明了扩展决策曲线分析方法。对于所检查的阈值值,“根据预测模型对待患者”策略的表现要好于或接近一定大小的所有治疗策略。但是,在临床决策中,即使很小的差异也可能很重要。由于个性化模型的优势在所有阈值中都不一致,因此在提倡其在决策中的适用性之前,可能需要改进的模型。决策曲线分析的这种新型扩展可以应用于基于NMA的预测模型,以评估其用于治疗决策的用途。

Decision curve analysis can be used to determine whether a personalized model for treatment benefit would lead to better clinical decisions. Decision curve analysis methods have been described to estimate treatment benefit using data from a single RCT. Our main objective is to extend the decision curve analysis methodology to the scenario where several treatment options exist and evidence about their effects comes from a set of trials, synthesized using network meta-analysis (NMA). We describe the steps needed to estimate the net benefit of a prediction model using evidence from studies synthesized in an NMA. We show how to compare personalized versus one-size-fit-all treatment decision-making strategies, like "treat none" or "treat all patients with a specific treatment" strategies. The net benefit per strategy can then be plotted for a plausible range of threshold probabilities to reveal the most clinically useful strategy. We applied our methodology to an NMA prediction model for relapsing-remitting multiple sclerosis, which can be used to choose between Natalizumab, Dimethyl Fumarate, Glatiramer Acetate, and placebo. We illustrated the extended decision curve analysis methodology using several threshold values combinations for each available treatment. For the examined threshold values, the "treat patients according to the prediction model" strategy performs either better than or close to the one-size-fit-all treatment strategies. However, even small differences may be important in clinical decision-making. As the advantage of the personalized model was not consistent across all thresholds, an improved model may be needed before advocating its applicability for decision-making. This novel extension of decision curve analysis can be applied to NMA based prediction models to evaluate their use to aid treatment decision-making.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源