论文标题

通过随机选择背景变量纠正混淆

Correcting Confounding via Random Selection of Background Variables

论文作者

Chen, You-Lin, Minorics, Lenon, Janzing, Dominik

论文摘要

我们提出了一种区分因果影响与以下情况下隐藏混杂的方法:给定目标变量,潜在的因果驱动器X和大量背景特征,我们提出了一个新的标准,用于识别因X上回归系数的稳定性,以选择Y的回归系数的稳定性,以选择不同的背景特征。为此,我们提出了一个统计v测量系数的可变性。我们证明,要受到背景影响的对称性假设,当and x不包含因果驱动因素时,V会收敛至零。在使用模拟数据的实验中,该方法的表现优于艺术算法的状态。此外,我们报告了真实数据的令人鼓舞的结果。我们的方法与一般的信念相吻合,即因果见解可以更好地概括跨环境的统计关联,并证明了文献中类似的现有启发式方法是合理的。

We propose a method to distinguish causal influence from hidden confounding in the following scenario: given a target variable Y, potential causal drivers X, and a large number of background features, we propose a novel criterion for identifying causal relationship based on the stability of regression coefficients of X on Y with respect to selecting different background features. To this end, we propose a statistic V measuring the coefficient's variability. We prove, subject to a symmetry assumption for the background influence, that V converges to zero if and only if X contains no causal drivers. In experiments with simulated data, the method outperforms state of the art algorithms. Further, we report encouraging results for real-world data. Our approach aligns with the general belief that causal insights admit better generalization of statistical associations across environments, and justifies similar existing heuristic approaches from the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源