论文标题

使用线性表示对非线性动力学系统进行量子计算的挑战

Challenges for quantum computation of nonlinear dynamical systems using linear representations

论文作者

Lin, Yen Ting, Lowrie, Robert B., Aslangil, Denis, Subaşı, Yiğit, Sornborger, Andrew T.

论文摘要

许多最近的研究提出,线性表示适用于用量子计算机求解非线性动力学系统,从根本上讲,该系统从根本上对希尔伯特空间中的波函数进行线性作用。线性表示,例如Koopman代表和Koopman von Neumann力学,已经从动力系统研究社区中重新引起了人们的关注。在这里,我们旨在提出一个统一的理论框架,该框架目前在文献中缺少,它可以通过该框架进行比较和关联现有方法,它们的概念基础及其表示。我们还旨在表明,尽管通过这种线性表示可能可以对非线性经典系统进行量子模拟,但实际上,对可行的有限维空间的必要投影最终将诱导数值伪像,这可能很难消除甚至控制。结果,使用量子计算来解决一般非线性动力学系统的实用,可靠和准确的方法仍然是一个开放的问题。

A number of recent studies have proposed that linear representations are appropriate for solving nonlinear dynamical systems with quantum computers, which fundamentally act linearly on a wave function in a Hilbert space. Linear representations, such as the Koopman representation and Koopman von Neumann mechanics, have regained attention from the dynamical-systems research community. Here, we aim to present a unified theoretical framework, currently missing in the literature, with which one can compare and relate existing methods, their conceptual basis, and their representations. We also aim to show that, despite the fact that quantum simulation of nonlinear classical systems may be possible with such linear representations, a necessary projection into a feasible finite-dimensional space will in practice eventually induce numerical artifacts which can be hard to eliminate or even control. As a result, a practical, reliable and accurate way to use quantum computation for solving general nonlinear dynamical systems is still an open problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源