论文标题

用于神经网络验证的稀疏多项式优化

Sparse Polynomial Optimisation for Neural Network Verification

论文作者

Newton, Matthew, Papachristodoulou, Antonis

论文摘要

社会中神经网络的流行率正在以越来越多的速度扩大。很明显,在使用神经网络的系统上提供强大的保证非常重要,尤其是在关键安全应用中。受过训练的神经网络对对抗攻击的敏感性是其最大的缺点之一。为了提供强大的保证,一种成功的成功方法是使用平等和不平等约束来绑定激活函数。但是,有很多方法可以形成这些界限,从而在保守性和复杂性之间取消了权衡。根据这些界限的复杂性,优化问题的计算时间变化,求解时间较长,通常会导致更紧密的界限。我们使用稀疏的多项式优化理论和actitivstellensatz从不同的角度解决了问题,该理论源自真实代数几何学领域。前者利用弦频稀疏性的思想来利用神经网络的自然级联结构,而后来则断言了半代数集的空虚,并具有嵌套的非保障精度测试家族,以提供紧密的界限。我们表明,可以显着收紧界限,而计算时间仍然是合理的。我们比较了不同求解器的求解时间,并以增加计算时间为代价可以提高准确性。我们表明,通过使用这种稀疏的多项式框架,可以通过Relu,Sigmoid和Tanh激活函数提高求解时间和精度来提高其他方法的神经网络验证。

The prevalence of neural networks in society is expanding at an increasing rate. It is becoming clear that providing robust guarantees on systems that use neural networks is very important, especially in safety-critical applications. A trained neural network's sensitivity to adversarial attacks is one of its greatest shortcomings. To provide robust guarantees, one popular method that has seen success is to bound the activation functions using equality and inequality constraints. However, there are numerous ways to form these bounds, providing a trade-off between conservativeness and complexity. Depending on the complexity of these bounds, the computational time of the optimisation problem varies, with longer solve times often leading to tighter bounds. We approach the problem from a different perspective, using sparse polynomial optimisation theory and the Positivstellensatz, which derives from the field of real algebraic geometry. The former exploits the natural cascading structure of the neural network using ideas from chordal sparsity while the later asserts the emptiness of a semi-algebraic set with a nested family of tests of non-decreasing accuracy to provide tight bounds. We show that bounds can be tightened significantly, whilst the computational time remains reasonable. We compare the solve times of different solvers and show how the accuracy can be improved at the expense of increased computation time. We show that by using this sparse polynomial framework the solve time and accuracy can be improved over other methods for neural network verification with ReLU, sigmoid and tanh activation functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源