论文标题

每个最大亚组都是nilpotent或正常或具有$ p'$ - 订单的有限组

Finite groups in which every maximal subgroup is nilpotent or normal or has $p'$-order

论文作者

Shi, Jiangtao, Li, Na, Shen, Rulin

论文摘要

令$ g $为有限的组,$ p $ $ | g | $的固定prime除数。将nilpotence,正态性和群体的顺序结合在一起,我们证明,如果每个最大亚组为$ g $是nilpotent或normal的,或者有$ p'$ - 订单,则(1)$ g $是可溶解的; (2)$ g $有一个Sylow塔; (3)最多存在一个prime除数$ q $ $ | g | $,因此$ g $既不是$ q $ nilpotent也不是$ q $,其中$ q \ q \ neq p $。

Let $G$ be a finite group and $p$ a fixed prime divisor of $|G|$. Combining the nilpotence, the normality and the order of groups together, we prove that if every maximal subgroup of $G$ is nilpotent or normal or has $p'$-order, then (1) $G$ is solvable; (2) $G$ has a Sylow tower; (3) There exists at most one prime divisor $q$ of $|G|$ such that $G$ is neither $q$-nilpotent nor $q$-closed, where $q\neq p$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源