论文标题

Weisfeiler-Lehman遇到了Gromov-Wasserstein

Weisfeiler-Lehman meets Gromov-Wasserstein

论文作者

Chen, Samantha, Lim, Sunhyuk, Mémoli, Facundo, Wan, Zhengchao, Wang, Yusu

论文摘要

Weisfeiler-Lehman(WL)测试是图形同构测试的经典过程。 WL测试还广泛用于设计图内核和分析图神经网络。在本文中,我们提出了weisfeiler-lehman(WL)距离,这是标记的测量量马尔可夫链(LMRMC)之间的距离的概念,其中标记的图形是特殊情况。 WL距离是可计算的多项式时间,并且与WL测试兼容,因为前者是正时且仅当WL测试才能区分两个相关图时,前者是正的。 WL距离捕获并比较了基础LMMC的微妙结构,因此,它比用于定义最先进的WASSERSTEIN WEISSERSEIN WEISFEILER-LEHMAN-LEHMAN GRAPH内核的距离更具区别。受WL距离的结构的启发,我们确定了LMMC上的神经网络体系结构,该结构原来是通用W.R.T.在所有LMMC的空间(包括所有图)的空间上定义的连续函数,并具有WL距离。最后,WL距离被证明是稳定的W.R.T. Gromov-Wasserstein(GW)距离的自然变体,用于比较我们识别的公制链。因此,WL距离也可以解释为GW距离的多项式时间下限,而GW距离通常是NP-HARD进行计算。

The Weisfeiler-Lehman (WL) test is a classical procedure for graph isomorphism testing. The WL test has also been widely used both for designing graph kernels and for analyzing graph neural networks. In this paper, we propose the Weisfeiler-Lehman (WL) distance, a notion of distance between labeled measure Markov chains (LMMCs), of which labeled graphs are special cases. The WL distance is polynomial time computable and is also compatible with the WL test in the sense that the former is positive if and only if the WL test can distinguish the two involved graphs. The WL distance captures and compares subtle structures of the underlying LMMCs and, as a consequence of this, it is more discriminating than the distance between graphs used for defining the state-of-the-art Wasserstein Weisfeiler-Lehman graph kernel. Inspired by the structure of the WL distance we identify a neural network architecture on LMMCs which turns out to be universal w.r.t. continuous functions defined on the space of all LMMCs (which includes all graphs) endowed with the WL distance. Finally, the WL distance turns out to be stable w.r.t. a natural variant of the Gromov-Wasserstein (GW) distance for comparing metric Markov chains that we identify. Hence, the WL distance can also be construed as a polynomial time lower bound for the GW distance which is in general NP-hard to compute.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源