论文标题
基于自适应信息的方法,用于确定异源性var模型中的协整等级
Adaptive information-based methods for determining the co-integration rank in heteroskedastic VAR models
论文作者
论文摘要
标准方法,例如基于Johansen(伪)的可能性比(PLR)测试的顺序程序,用于确定一个矢量自动回归(VAR)变量的整合系统的协整等级,即订单的变量系统可以显着影响,即使是无官方的杂物性杂型杂质性(无效),也可以受到无态度的影响。该问题的已知解决方案包括PLR测试的野生引导实现或使用信息标准(例如BIC)选择协调等级。尽管在异性恋性的存在下渐近有效,但在某些非平稳挥发性模式下,这些方法可以显示出非常低的有限样品功率。特别是,它们没有利用通过使用自适应推理方法在非平稳波动率的情况下实现的潜在效率提高。在假设已知的自回归滞后长度的假设下,Boswijk和Zu(2022)使用协方差矩阵过程的非参数估计来开发基于自适应PLR测试的方法。然而,众所周知,选择不正确的滞后长度可以显着影响信息标准和Bootstrap PLR测试的功效,以确定有限样本中的协整等级。我们表明,基于自适应信息标准的方法可用于估计与引导性自适应PLR测试有关的自回归滞后命令,或者共同确定协调级别和VAR滞后长度,并且在这两种情况下,如果在非机构波动率的情况下,则它们在这些参数中均具有较弱的一致性。蒙特卡洛模拟用于证明使用自适应方法所带来的潜在收益,并提供了对美国期限结构的经验应用。
Standard methods, such as sequential procedures based on Johansen's (pseudo-)likelihood ratio (PLR) test, for determining the co-integration rank of a vector autoregressive (VAR) system of variables integrated of order one can be significantly affected, even asymptotically, by unconditional heteroskedasticity (non-stationary volatility) in the data. Known solutions to this problem include wild bootstrap implementations of the PLR test or the use of an information criterion, such as the BIC, to select the co-integration rank. Although asymptotically valid in the presence of heteroskedasticity, these methods can display very low finite sample power under some patterns of non-stationary volatility. In particular, they do not exploit potential efficiency gains that could be realised in the presence of non-stationary volatility by using adaptive inference methods. Under the assumption of a known autoregressive lag length, Boswijk and Zu (2022) develop adaptive PLR test based methods using a non-parameteric estimate of the covariance matrix process. It is well-known, however, that selecting an incorrect lag length can significantly impact on the efficacy of both information criteria and bootstrap PLR tests to determine co-integration rank in finite samples. We show that adaptive information criteria-based approaches can be used to estimate the autoregressive lag order to use in connection with bootstrap adaptive PLR tests, or to jointly determine the co-integration rank and the VAR lag length and that in both cases they are weakly consistent for these parameters in the presence of non-stationary volatility provided standard conditions hold on the penalty term. Monte Carlo simulations are used to demonstrate the potential gains from using adaptive methods and an empirical application to the U.S. term structure is provided.