论文标题
系数的某些特性Kolchin尺寸多项式
Some Properties of Coefficients Kolchin Dimension Polynomial
论文作者
论文摘要
该文章通过最小化系数提出了表达数值多项式的链球菌常数的公式。由此,我们拥有多项式多项式的麦考雷(Macaulay)常数不会降低。 对于最小的差分维度多项式(W.Sitt在[5]中引入了这个概念),我们将证明Macaulay常数的标准是相等的。在这种情况下,如示例(2)所示,从上方到启动生成器的多项式的麦考雷常数没有边界。
The article presents a formula expressing Macaulay constants of a numerical polynomial through its minimizing coefficients. From this, we have that Macaulay constants of Kolchin dimension polynomials do not decrease. For the minimal differential dimension polynomial (this concept was introduced by W.Sitt in [5]) we will prove a criterion for Macaulay constants to be equal. In this case, as the example (2) shows, there are no bounds from above to the Macaulay constants of the dimension polynomial for starting generator.