论文标题
在2017-2019期间,通过尖锐的多波长眼睛调查Blazar TXS 0506+056
Investigating the blazar TXS 0506+056 through sharp multi-wavelength eyes during 2017-2019
论文作者
论文摘要
Blazar TXS 0506+056于2017年9月成为天体物理社区的焦点,当时IceCube(Icecube-170922a)检测到的高能源中微子在3 $σ$级别与来自该来源的$γ$ -DRARE相关联。如今,这种多通间的光子中性结合仍然是有史以来最重要的。 TXS 0506+056是在ICECUBE-170922A事件之前研究的对象。为了更好地描述其广泛的发射,我们组织了一场持续16个月(2017年11月至2019年2月)的多波长运动,涵盖了无线电频段(Metsähovi,ovro),光学/UV(asas-sn,kva,kva,kva,kva,rem,swift/uvot),x rays(swift/xrt,nustrt,nustar),form use $ nustar和form use $ gath(form form)(forr nustar)(forr use)(form form)(forr use)(form use)(高能(VHE)$γ$射线(魔术)。在$γ$射线中,来源的行为与2017年的行为显着不同:魔术观察显示2018年12月的燃烧活动,而源在其余活动中仅显示了4 $σ$水平的超额(74小时的累积暴露);费米/LAT观察结果显示出几种短(天至周的时间尺度)的耀斑,与2017年的长期亮度不同。在较低的能量下未检测到明显的耀斑。无线电曲线显示出越来越多的通量趋势,在其他波长中看不到。我们将多波长光谱能量分布建模在液光 - 狂热场景中,其中X光片中的贝特·希特勒和pion-decay级联反应出现,在X射线和X射线中,并且VHE $γ$ rays出现。根据此处介绍的模型,2018年12月$γ$ -Ray耀斑与中微子的发射相关,该中微子发射太短且不够明亮,无法被当前的中微子仪器检测到。
The blazar TXS 0506+056 got into the spotlight of the astrophysical community in September 2017, when a high-energy neutrino detected by IceCube (IceCube-170922A) was associated at the 3 $σ$ level to a $γ$-ray flare from this source. This multi-messenger photon-neutrino association remains, as per today, the most significant one ever observed. TXS 0506+056 was a poorly studied object before the IceCube-170922A event. To better characterize its broad-band emission, we organized a multi-wavelength campaign lasting 16 months (November 2017 to February 2019), covering the radio-band (Metsähovi, OVRO), the optical/UV (ASAS-SN, KVA, REM, Swift/UVOT), the X-rays (Swift/XRT, NuSTAR), the high-energy $γ$ rays (Fermi/LAT) and the very-high-energy (VHE) $γ$ rays (MAGIC). In $γ$ rays, the behaviour of the source was significantly different from the 2017 one: MAGIC observations show the presence of flaring activity during December 2018, while the source only shows an excess at the 4$σ$ level during the rest of the campaign (74 hours of accumulated exposure); Fermi/LAT observations show several short (days-to-week timescale) flares, different from the long-term brightening of 2017. No significant flares are detected at lower energies. The radio light curve shows an increasing flux trend, not seen in other wavelengths. We model the multi-wavelength spectral energy distributions in a lepto-hadronic scenario, in which the hadronic emission emerges as Bethe-Heitler and pion-decay cascade in the X-rays and VHE $γ$ rays. According to the model presented here, the December 2018 $γ$-ray flare was connected to a neutrino emission that was too brief and not bright enough to be detected by current neutrino instruments.