论文标题
通用efts中的振幅基础
Amplitude bases in generic EFTs
论文作者
论文摘要
我们首次提出有效的算法,以找到由(无质量和巨大的)纺纱螺旋变量在四个维度上构建的运动独立结构的基础。该方法在任何有效的田间理论(EFT)中提供了具有通用质量,旋转和多样性的散射幅度的独立接触项的分类。这些接触项是与EFT中一组无关的操作员一对一的对应关系。 As basic applications of our method, we classify the $D^{2n} F^4$ contact terms in SU$(N)$ Yang-Mills theory for $n\leq 8$, dimension-six operators involving five $W^\pm$, $Z$ and $γ$ vector bosons, and spin-tidal effective interactions for spin-1 massive particles in gravitational theories.
We present for the first time an efficient algorithm to find a basis of kinematically independent structures built of (massless and massive) spinor helicity variables in four dimensions. This method provides a classification of independent contact terms for the scattering amplitudes with generic masses, spins and multiplicity, in any effective field theory (EFT). These contact terms are in one-to-one correspondence with a complete set of irrelevant operators in the EFT. As basic applications of our method, we classify the $D^{2n} F^4$ contact terms in SU$(N)$ Yang-Mills theory for $n\leq 8$, dimension-six operators involving five $W^\pm$, $Z$ and $γ$ vector bosons, and spin-tidal effective interactions for spin-1 massive particles in gravitational theories.